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 General Introduction 
General Introduction 

Groundwater is a major source for our drinking, industrial, and agricultural 

water needs worldwide. However, contamination of aquifers with organic and 

inorganic compounds threatens the long-term value and exploitation of groundwater 

resources. Detailed knowledge of factors that control the fate of groundwater 

contaminants is therefore of great importance. The strong influence of groundwater 

oxidation state on the fate of contaminants is well known. For example, chromium and 

uranium are soluble (mobile) under oxidizing conditions (Blowes, 2002; Senko et al., 

2002). In contrast, reducing conditions keep iron and manganese in solution by 

preventing the precipitation of their insoluble hydroxides at neutral pHs (Appelo and 

Postma, 1993). The fate of organic contaminants in groundwater is particularly 

dependent on the oxidation state of groundwater, since carbon occurs in a wide range 

of oxidation numbers (IV to -IV). For example, chlorinated solvents are more 

degradable under reducing conditions, while aromatic compounds (e.g. BTEX) are 

more degradable in oxic groundwaters (Bradley et al., 1998; Nielsen et al., 1995; 

Schreiber and Bahr, 1999; Skubal et al., 2001). Aim of this thesis is to contribute to 

the knowledge of how reactive components in aquifer sediments affect the oxidation 

state of groundwater. The oxidation state of groundwater is controlled by 

thermodynamic imbalances that drive reduction-oxidation (redox) reactions during 

which electrons are transferred from a reductant (electron donor) to an oxidant 

(electron acceptor). 

Chromate (CrO4
-) and chlorinated hydrocarbons (e.g. TCE) are examples of 

contaminants with oxidizing properties (Fig. 1.1). Oxygen, nitrate and sulfate are the 

major oxidants in pristine groundwater. Besides these dissolved oxidants, solid iron 

and manganese oxides are important sediment-associated oxidants (Fig. 1.1). 

Reductants present in the aquifer consume these oxidants sequentially along a 

groundwater flow path in an order that mainly depends on their relative oxidation 

potential (Fig. 1.1). Consequently, dissolved oxygen initially present in shallow 

groundwater is removed at depth by naturally occurring biogeochemical processes, 
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leading to aquifers that are free of oxygen (anoxic). Only under sufficiently depleted 

oxygen concentrations, the reductive transformation of nitrate (NO3) to dinitrogen 

(N2) gas occurs (Hiscock et al., 1991; Korom, 1992; Tiedje, 1988). This process, 

known as denitrification, involves a multitude of intermediate electron transfer steps 

(Fig. 1.2). Commonly, denitrification in groundwater is coupled to the oxidation of 

sediment-associated reductants, such as pyrite (Böhlke and Denver, 1995; Kelly, 

1997; Postma et al., 1991) and organic matter (Bengtsson and Bergwall, 1995; 

Obenhuber and Lowrance, 1991; Smith et al., 1991; Trudell et al., 1986). 

 

Figure 1.1 Oxidant sources and sequence of reduction reactions in groundwater: aerobic 
respiration, NO3-reduction, Mn-reduction, Fe-reduction, SO4-reduction and 
CO2-reduction (methanogenesis). Solid lines represent predominant sources. 
Dashed lines indicate additional sources. 

 

Redox processes are generally mediated by microbes that derive energy from 

the transfer of electrons. The amount of dissolved organic matter in most pristine 

groundwaters (<1 mg C/l) is too small and recalcitrant to create oxidant-depleted 

conditions (Aiken, 1985; Frimmel, 1998; Pettersson et al., 1994; Thurman, 1985). 

Only when easily degradable organic compounds are excessively present (e.g. landfill 
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leachate, petroleum spills), oxidant-limited conditions may occur. Otherwise, 

microbial metabolism is inherently limited by the availability of organic substrate or 

other potential reductants (Chapelle, 2000). Thus, while the sequence of oxidant 

consumption depends largely on their relative oxidative strength, the reactivity of 

reductants dominantly controls the rate of oxidant consumption. Therefore, to 

understand and predict the direction and magnitude of redox-related changes in the 

chemistry of both contaminated and pristine groundwater systems, detailed knowledge 

on the factors that control the reduction capacity of aquifers is essential. 

 

 

Figure 1.2 The range in oxidation states of nitrogen. Denitrification involves the transfer of 
electrons during the reductive transformation of nitrate-N (V) to harmless 
dinitrogen (0) gas. Ammonium-N (-III) is the most reduced form of nitrogen and 
is the end product of dissimilatory nitrate reduction (Tiedje, 1988). 

1.1 REDUCTION CAPACITY OF AQUIFERS 

The reduction capacity of aquifer sediments determines the extent to which 

natural attenuation of contaminating oxidants such as chromate or nitrate occurs (Fig. 

1.1). In addition, it negatively affects the efficiency during the remediation of 

reducing contaminants (e.g. petroleum), since sedimentary reductants will compete for 

injected oxidants (Baker et al., 2000; Barcelona and Holm, 1991; Broholm et al., 

2000; Heron and Christensen, 1995; Nelson et al., 2001; Schäfer and Kinzelbach, 

1996; Schreiber and Bahr, 1999). 
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Figure 1.3 The incorporation of sedimentary organic matter (SOM) during sediment 
deposition and subsequent diagenetic SOM oxidation processes. Aerobic 
oxidation and denitrification results in a loss of sediment reduction capacity. 
During manganese and iron reduction, the precipitation (↓↓↓↓ ) of mineral 
reductants retains sedimentary reduction capacity derived from SOM. Based on 
an illustration by Karen Hart. 

 

To understand the reduction capacity of aquifer sediments, knowledge of the 

amount, type and reactivity of sedimentary reductants present is crucial. Sedimentary 

organic matter (SOM) and a range of minerals that contain reduced sulfur, iron or 

manganese are potentially reactive in aquifers. For example, the anaerobic degradation 

of labile SOM during early sediment diagenesis components may drive the 

precipitation of pyrite (FeS2), siderite (FeCO3) or other mineral reductants (Berner, 

1971). Therefore, the occurrence of these diagenetic processes affects the nature of the 

reduction capacity of aquifer sediments (Fig. 1.3). These secondary reductants are 

generated at the expense of labile SOM components (Berner, 1971; Sagemann et al., 



General Introduction 
 

 17

1999). The composition of SOM is thus a critical control in determining the nature of 

the reduction capacity of sedimentary aquifers, as it 1) influences the reactivity of 

SOM as a reductant and 2) controls the importance of mineral reductants that were 

formed during early diagenesis. 

1.2 COMPOSITION OF SEDIMENTARY ORGANIC MATTER 

The importance of SOM as a reductant in the redox chemistry of groundwater 

systems is long known (Freeze and Cherry, 1979; Johns, 1968; Plummer, 1977; 

Thornstenson and Fisher, 1979), but its molecular composition is still largely 

unexplored. Consequently, SOM in aquifers is generally referred to in ill-defined 

terms such as refractory, humic, amorphous or kerogen, without molecular 

verification of its nature. To date, research on the composition and degradation of 

organic matter has primarily focused on soils and marine surface sediments, 

environments that are significantly richer in organic matter than sandy aquifers (Fig. 

1.4). As a result, numerous comprehensive books and thorough reviews on the nature 

of organic matter are available, mainly in the context of soil fertility, climate 

reconstruction and hydrocarbon source rock potential (e.g. Hedges and Oades, 1997; 

Stevenson, 1994; Tissot and Welte, 1984; Tyson, 1995). 

The predominant source of SOM is the burial of primary biomass with 

accumulating sediment (Tyson, 1995). Plant and microbial biomass consist of 

complex organic mixtures and the relative abundances of organic compounds vary 

with biomass type (Kogel-Knabner, 2002). Therefore, the compositional variation of 

SOM reflects to some extent differences in the composition of the biomass source. 

Marine phytoplankton is a considerable source for amino acids and short-chain lipids 

(Camacho-Ibar et al., 2003; Grossi et al., 2001; Sun et al., 2002), while land plants are 

predominantly composed of the carbohydrate-based macromolecules. In addition, 

higher plants contain lignin compounds that provide strength to support tree trunks 

and branches and comprise 5–30 % of dry biomass. These heterogeneous 

polyphenolic macromolecules are specific for higher land plants and thus act as 

biomarkers for a terrigenous SOM origin (Hedges and Oades, 1997; Tyson, 1995). 
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Although the initial composition of SOM strongly reflects the composition of 

the biomass source, oxidation reactions alter the composition of SOM during and after 

burial (Fig. 1.3). Most of buried SOM (63–98%) does not survive beyond early 

diagenesis (Tyson, 1995). In particular, the mineralization of labile compounds such 

as plankton-derived amino acids is faster than of macromolecular compounds such as 

lignin (Cowie and Hedges, 1992; Cowie et al., 1992; Henrichs, 1993; Tegelaar et al., 

1995). Consequently, SOM degradation rates in soils and marine sediments range in 

orders of magnitude, depending on the reactivity of the compounds present (Henrichs, 

1993; Kogel-Knabner, 2002).  

The mineralization rate of organic matter partly depends on oxidant type. 

Studies have indicated that the rates for aerobic and anaerobic degradation of labile 

organic compounds are similar (Henrichs and Reeburgh, 1987; Lee, 1992). However, 

recalcitrant organic components such as lignin or macromolecular aliphatics degrade 

much faster under aerobic than under anaerobic conditions (Canfield, 1994; Hulthe et 

al., 1998; Kristensen and Holmer, 2001). The chief explanation for these observations 

is that during aerobic degradation, oxygen not only functions as an oxidant, it also 

serves as a co-substrate for enzymes (oxygenases) that aid the oxidation of recalcitrant 

aromatic and aliphatic compounds. As a result of the lack of these oxygenases, 

anaerobic degradation proceeds through less efficient pathways, such as benzoyl-CoA 

metabolism (Harwood et al., 1999). 

For an assessment of the overall potential reactivity of SOM, its bulk 

composition must be characterized. While several analytical techniques are available 

(Kögel-Knabner, 2000), common elemental analysis is not sufficiently specific to 

cover the wide range of organic compounds present. In addition, the abundance of 

macromolecular compounds in biomass (Kogel-Knabner, 2002) makes SOM 

unavailable to any direct analytical approach (Saiz-Jimenez, 1994). 13C NMR 

spectroscopy and other spectroscopic techniques are now widely used for the chemical 

characterization of SOM (Kögel-Knabner, 2000). These techniques provide 

information about the nature of carbon environments such as functional groups or 

aromaticity, and the non-destructiveness and the lack of major pretreatment 
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requirements are big advantages for samples. However, the low organic matter 

contents and the presence of Fe-bearing paramagnetic compounds limit their 

applicability of SOM in aquifer sediments. Furthermore, these techniques do not 

provide information on the molecular associations of SOM. Pyrolysis is a powerfull 

thermal degradation technique that allows the characterization of the building blocks 

of complex macromolecular organic matter when coupled to gas chromatograph and 

mass spectrometer (Py-GC/MS). It is frequently used to characterize the bulk 

composition of organic matter in both soils and sediments (Chiavari et al., 1994; 

Kögel-Knabner, 2000; Levy, 1966; Saiz-Jimenez, 1994; Saiz-Jimenez and De Leeuw, 

1986). Although several pitfalls exist, it is currently the main technique available for 

the molecular bulk characterization of complex SOM (Chiavari et al., 1994). 

1.3 REACTIVITY OF SOM IN GROUNDWATER SYSTEMS 

Rates of SOM oxidation in aquifer sediments are several orders of magnitude 

lower than observed in environments that recurrently receive fresh organic matter, 

such as marine surface sediments (Chapelle and Lovley, 1990; Jakobsen and Postma, 

1994). In groundwater systems with an ample, continuous supply of fresh labile 

organic matter (e.g. land-fill leachate), the availability of oxidants commonly limits 

organic matter degradation rates (Chapelle, 2000). In addition, environmental 

conditions, such as nutrient level, temperature or acidity potentially control microbial 

activity (Atlas and Bartha, 1998). 

A number of studies have shown that not the addition of nitrate but the addition 

of a labile carbon source, such as glucose, significantly increased denitrification rates 

in groundwater systems (Bengtsson and Bergwall, 1995; Bradley et al., 1992; Hill et 

al., 2000; Obenhuber and Lowrance, 1991; Smith and Duff, 1988; Starr and Gillham, 

1993). This indicates that neither microbial activity nor the amount of oxidants is rate 

limiting and supports the general idea that the availability of SOM controls the rate of 

its degradation in aquifer sediments. 
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Figure 1.4 Cross plot of total organic carbon versus specific surface area of the mineral 
phase. A preliminary study (unpublished results) at the ‘t Klooster site (Fig. 1.5) 
provided the data for the aquifer sands. Data for marine clay is taken from a 
study on black shale (Kennedy et al., 2002). Clay aquitard data are taken from a 
study on four different aquitards (Allen-King et al., 1995). All specific surface 
areas (SSA) were determined by sorption of ethyl-glycol monoethyl (Churchman 
et al., 1991). 

Both its accessibility (physical) and degradability (chemical) potentially control 

the availability of SOM in aquifer sediments. Physical limitations on its reactivity 

occur at a grain scale when particle–organic compound interactions protects a part of 

the organic matter against microbial degradation. Studies have indicated a relationship 

between SOM availability and sorption to mineral surfaces in both marine clay 

sediments (Keil et al., 1994; Mayer, 1994a; Mayer, 1994b; Mayer, 1999) and soils 

(Chorover and Amistadi, 2001; Salmon et al., 2000; Sollins et al., 1996). In 

groundwater systems, it has been shown that microbes in clay aquitards are unable to 

mineralize the SOM present due to pore size restrictions (Chapelle and Bradley, 1996; 

Chapelle and Lovley, 1990; McMahon and Chapelle, 1991). In a preliminary study, a 

positive relationship was found between the specific surface area and total organic 
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carbon contents of aquifer sands (Fig. 1.4, unpublished results). While considerable 

scatter in the data exists, the general trend compares favorably with data for clayey 

sediments (Allen-King et al., 1995; Kennedy et al., 2002). Therefore, the interaction 

of SOM with mineral surfaces may decrease its availability in aquifer sediments. 

Alternatively, SOM may be chemically refractory towards oxidation. From 

studies on organic matter in soils and marine sediments, it is generally recognized that 

its reactivity decreases with continuing degradation. More precisely, the most labile 

compounds are consumed at a higher rate, resulting in an overall decrease of SOM 

reactivity with time. Built on this notion, several descriptive models have incorporated 

SOM fractions with different reactivities to account for the decreasing reactivity of 

SOM with time (Berner, 1980; Middelburg, 1989). However, these fractions are 

arbitrary and no tools exist to assess the size and reactivity of these different kinetic 

pools (Almendros and Dorado, 1999; Gleixner et al., 2002). 

1.4 SCOPE OF THIS STUDY 

This thesis focuses on the role of SOM as a reductant in aquifer sediments. 

Using pyrolysis-GC/MS, the molecular composition of SOM is characterized and the 

controls on its reactivity are assessed. 

As stated earlier, SOM generally co-occurs and is frequently even closely 

associated with other sedimentary reductants in aquifer sediments. Therefore, the 

relative contribution of SOM to oxidant consumption during sediment oxidation 

depends on the reactivity of other reductants present. The amounts of these reductants 

present depend on the diagenetic history and provenance of the sediment. For 

example, pyrite and Fe(II)-bearing glauconite are commonly formed in marine 

depositional environments, while siderite is predominantly formed in terrestrial 

settings (Berner, 1971; Postma, 1982). While the reactivity of SOM in aquifers is 

either chemically or physically controlled, the oxidation of these reductants under pH-

neutral conditions is mainly determined by surface oxidation kinetics. Therefore, the 

precipitation of metal hydroxide on mineral surfaces is an impediment that controls 

their reactivity (Nicholson et al., 1990; Postma, 1983; Postma, 1990). The co-
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occurrence of several potentially reactive sedimentary reductants in aquifer sediments 

complicates the isolated study of SOM reactivity upon exposure to oxidants. 

Therefore, the separation of and the controls on the contributions of various reductants 

to the reduction capacity of aquifer sediments is another aim of this study. 

Aquifer sediments from two drinking water production sites were studied (Fig. 

1.5). The Langerak site is located in the central part of the Netherlands. Here, a 

confined sedimentary aquifer is recharged with water from the River Lek. Proposed 

future induced riverbank infiltration will increase the oxidant loadings of NO3 and O2. 

The site ‘t Klooster is located in the eastern part of the Netherlands. Here, knowledge 

on the reactivity of aquifer sediments is particularly important as the excessive use of 

agricultural fertilizers on sandy soils cause elevated nitrate concentrations in shallow 

groundwater (Fraters et al., 1998; Hefting and de Klein, 1998; Pomper, 1989; 

Reijnders et al., 1998; van Beek et al., 1994; van Beek and Vogelaar, 1998). 

 

Figure 1.5 Location of the Langerak (1) and ‘t Klooster (2) aquifers in the Rhine–Meuse 
delta. The Langerak site is located along the River Lek. The ‘t Klooster site is 
located in between the River Rhine and River Ijssel. Dotted line represents the 
Dutch national boundary. 
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1.5 OUTLINE OF THIS THESIS 

This chapter serves as an introduction for the following research chapters. 

Chapter 2 describes the design and development of a fluidized-bed reactor for 

anaerobic biogeochemical sediment incubations; the developed fluidized-bed reactor 

was tested during denitrification experiments described in Chapter 4. In Chapter 3, 

sediments from the Langerak aquifer were characterized for the presence and 

reactivity of potential reductants. The reactivity towards oxygen was determined 

during sediment incubations. A method is developed to discriminate between 

contributions from SOM, pyrite and siderite oxidation based on CO2/O2 ratios and 

sulfate production. This method is also applied for the sediment incubations describe 

in Chapters 5 and 6. In Chapter 4, the nitrate reduction potential of anaerobic 

sediments from the Langerak aquifer is assessed using fluidized-bed (Chapter 2) and 

batch reactor experiments. The geochemical and microbial controls on denitrification 

are discussed. 

Chapter 5 describes the molecular composition of SOM in aquifer sediments 

selected from a marine and fluvio-glacial formation at the Klooster site. Molecular 

indications on the degradation status of SOM are linked with the reactivity of SOM as 

observed during aerobic incubation experiments. Chapter 6 discusses the molecular 

composition of SOM in different geological formations at the Klooster site. The 

controls on SOM preservation as well as the presence of pyrite and ferroan carbonates 

in aquifer sediments at this site are assessed. The controls on the reduction capacity 

and on the contributions of various reductants are discussed using aerobic sediment 

oxidation experiments. Lastly, Chapter 7 provides a synthesis of the thesis, in which 

the main findings are summarized and discussed, and where implications and future 

research directions are considered. 
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