General Introduction

Groundwater is a major source for our drinking, industrial, and agricultural water needs worldwide. However, contamination of aquifers with organic and inorganic compounds threatens the long-term value and exploitation of groundwater resources. Detailed knowledge of factors that control the fate of groundwater contaminants is therefore of great importance. The strong influence of groundwater oxidation state on the fate of contaminants is well known. For example, chromium and uranium are soluble (mobile) under oxidizing conditions (Blowes, 2002; Senko et al., 2002). In contrast, reducing conditions keep iron and manganese in solution by preventing the precipitation of their insoluble hydroxides at neutral pHs (Appelo and Postma, 1993). The fate of organic contaminants in groundwater is particularly dependent on the oxidation state of groundwater, since carbon occurs in a wide range of oxidation numbers (IV to -IV). For example, chlorinated solvents are more degradable under reducing conditions, while aromatic compounds (e.g. BTEX) are more degradable in oxic groundwaters (Bradley et al., 1998; Nielsen et al., 1995; Schreiber and Bahr, 1999; Skubal et al., 2001). Aim of this thesis is to contribute to the knowledge of how reactive components in aquifer sediments affect the oxidation state of groundwater. The oxidation state of groundwater is controlled by thermodynamic imbalances that drive reduction-oxidation (redox) reactions during which electrons are transferred from a reductant (electron donor) to an oxidant (electron acceptor).

Chromate (CrO₄) and chlorinated hydrocarbons (*e.g.* TCE) are examples of contaminants with oxidizing properties (Fig. 1.1). Oxygen, nitrate and sulfate are the major oxidants in pristine groundwater. Besides these dissolved oxidants, solid iron and manganese oxides are important sediment-associated oxidants (Fig. 1.1). Reductants present in the aquifer consume these oxidants sequentially along a groundwater flow path in an order that mainly depends on their relative oxidation potential (Fig. 1.1). Consequently, dissolved oxygen initially present in shallow groundwater is removed at depth by naturally occurring biogeochemical processes,

leading to aquifers that are free of oxygen (anoxic). Only under sufficiently depleted oxygen concentrations, the reductive transformation of nitrate (NO₃) to dinitrogen (N₂) gas occurs (Hiscock *et al.*, 1991; Korom, 1992; Tiedje, 1988). This process, known as denitrification, involves a multitude of intermediate electron transfer steps (Fig. 1.2). Commonly, denitrification in groundwater is coupled to the oxidation of sediment-associated reductants, such as pyrite (Böhlke and Denver, 1995; Kelly, 1997; Postma *et al.*, 1991) and organic matter (Bengtsson and Bergwall, 1995; Obenhuber and Lowrance, 1991; Smith *et al.*, 1991; Trudell *et al.*, 1986).

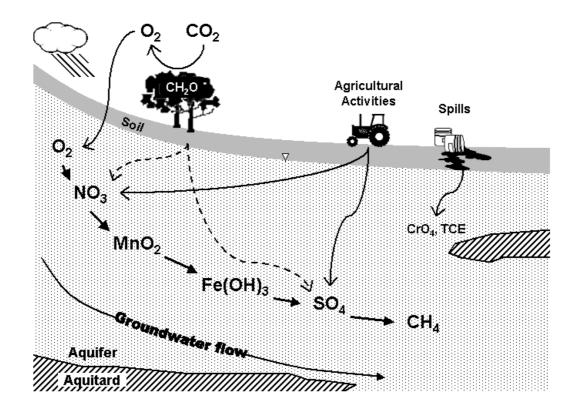


Figure 1.1 Oxidant sources and sequence of reduction reactions in groundwater: aerobic respiration, NO_3 -reduction, Mn-reduction, Fe-reduction, SO_4 -reduction and CO_2 -reduction (methanogenesis). Solid lines represent predominant sources. Dashed lines indicate additional sources.

Redox processes are generally mediated by microbes that derive energy from the transfer of electrons. The amount of dissolved organic matter in most pristine groundwaters (<1 mg C/l) is too small and recalcitrant to create oxidant-depleted conditions (Aiken, 1985; Frimmel, 1998; Pettersson *et al.*, 1994; Thurman, 1985). Only when easily degradable organic compounds are excessively present (*e.g.* landfill

leachate, petroleum spills), oxidant-limited conditions may occur. Otherwise, microbial metabolism is inherently limited by the availability of organic substrate or other potential reductants (Chapelle, 2000). Thus, while the *sequence* of oxidant consumption depends largely on their relative oxidative strength, the reactivity of reductants dominantly controls the *rate* of oxidant consumption. Therefore, to understand and predict the direction and magnitude of redox-related changes in the chemistry of both contaminated and pristine groundwater systems, detailed knowledge on the factors that control the reduction capacity of aquifers is essential.

Standard Redox Potential (V)
$$0.775$$
 1.093 0.996 1.59 1.77 0.275 1.093 0.996 0.996 0.275 0

Figure 1.2 The range in oxidation states of nitrogen. Denitrification involves the transfer of electrons during the reductive transformation of nitrate-N (V) to harmless dinitrogen (0) gas. Ammonium-N (-III) is the most reduced form of nitrogen and is the end product of dissimilatory nitrate reduction (Tiedje, 1988).

1.1 REDUCTION CAPACITY OF AQUIFERS

The reduction capacity of aquifer sediments determines the extent to which natural attenuation of contaminating oxidants such as chromate or nitrate occurs (Fig. 1.1). In addition, it negatively affects the efficiency during the remediation of reducing contaminants (*e.g.* petroleum), since sedimentary reductants will compete for injected oxidants (Baker *et al.*, 2000; Barcelona and Holm, 1991; Broholm *et al.*, 2000; Heron and Christensen, 1995; Nelson *et al.*, 2001; Schäfer and Kinzelbach, 1996; Schreiber and Bahr, 1999).

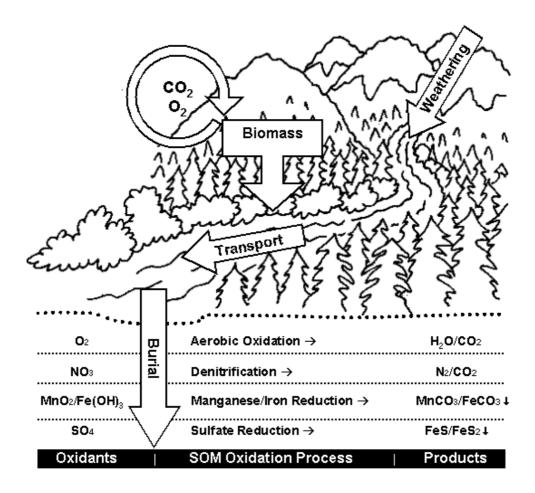


Figure 1.3 The incorporation of sedimentary organic matter (SOM) during sediment deposition and subsequent diagenetic SOM oxidation processes. Aerobic oxidation and denitrification results in a loss of sediment reduction capacity. During manganese and iron reduction, the precipitation (↓) of mineral reductants retains sedimentary reduction capacity derived from SOM. Based on an illustration by Karen Hart.

To understand the reduction capacity of aquifer sediments, knowledge of the amount, type and reactivity of sedimentary reductants present is crucial. Sedimentary organic matter (SOM) and a range of minerals that contain reduced sulfur, iron or manganese are potentially reactive in aquifers. For example, the anaerobic degradation of labile SOM during early sediment diagenesis components may drive the precipitation of pyrite (FeS₂), siderite (FeCO₃) or other mineral reductants (Berner, 1971). Therefore, the occurrence of these diagenetic processes affects the nature of the reduction capacity of aquifer sediments (Fig. 1.3). These secondary reductants are generated at the expense of labile SOM components (Berner, 1971; Sagemann *et al.*,

1999). The composition of SOM is thus a critical control in determining the nature of the reduction capacity of sedimentary aquifers, as it 1) influences the reactivity of SOM as a reductant and 2) controls the importance of mineral reductants that were formed during early diagenesis.

1.2 COMPOSITION OF SEDIMENTARY ORGANIC MATTER

The importance of SOM as a reductant in the redox chemistry of groundwater systems is long known (Freeze and Cherry, 1979; Johns, 1968; Plummer, 1977; Thornstenson and Fisher, 1979), but its molecular composition is still largely unexplored. Consequently, SOM in aquifers is generally referred to in ill-defined terms such as refractory, humic, amorphous or kerogen, without molecular verification of its nature. To date, research on the composition and degradation of organic matter has primarily focused on soils and marine surface sediments, environments that are significantly richer in organic matter than sandy aquifers (Fig. 1.4). As a result, numerous comprehensive books and thorough reviews on the nature of organic matter are available, mainly in the context of soil fertility, climate reconstruction and hydrocarbon source rock potential (*e.g.* Hedges and Oades, 1997; Stevenson, 1994; Tissot and Welte, 1984; Tyson, 1995).

The predominant source of SOM is the burial of primary biomass with accumulating sediment (Tyson, 1995). Plant and microbial biomass consist of complex organic mixtures and the relative abundances of organic compounds vary with biomass type (Kogel-Knabner, 2002). Therefore, the compositional variation of SOM reflects to some extent differences in the composition of the biomass source. Marine phytoplankton is a considerable source for amino acids and short-chain lipids (Camacho-Ibar *et al.*, 2003; Grossi *et al.*, 2001; Sun *et al.*, 2002), while land plants are predominantly composed of the carbohydrate-based macromolecules. In addition, higher plants contain lignin compounds that provide strength to support tree trunks and branches and comprise 5–30 % of dry biomass. These heterogeneous polyphenolic macromolecules are specific for higher land plants and thus act as biomarkers for a terrigenous SOM origin (Hedges and Oades, 1997; Tyson, 1995).

Although the initial composition of SOM strongly reflects the composition of the biomass source, oxidation reactions alter the composition of SOM during and after burial (Fig. 1.3). Most of buried SOM (63–98%) does not survive beyond early diagenesis (Tyson, 1995). In particular, the mineralization of labile compounds such as plankton-derived amino acids is faster than of macromolecular compounds such as lignin (Cowie and Hedges, 1992; Cowie *et al.*, 1992; Henrichs, 1993; Tegelaar *et al.*, 1995). Consequently, SOM degradation rates in soils and marine sediments range in orders of magnitude, depending on the reactivity of the compounds present (Henrichs, 1993; Kogel-Knabner, 2002).

The mineralization rate of organic matter partly depends on oxidant type. Studies have indicated that the rates for aerobic and anaerobic degradation of labile organic compounds are similar (Henrichs and Reeburgh, 1987; Lee, 1992). However, recalcitrant organic components such as lignin or macromolecular aliphatics degrade much faster under aerobic than under anaerobic conditions (Canfield, 1994; Hulthe *et al.*, 1998; Kristensen and Holmer, 2001). The chief explanation for these observations is that during aerobic degradation, oxygen not only functions as an oxidant, it also serves as a co-substrate for enzymes (oxygenases) that aid the oxidation of recalcitrant aromatic and aliphatic compounds. As a result of the lack of these oxygenases, anaerobic degradation proceeds through less efficient pathways, such as benzoyl-CoA metabolism (Harwood *et al.*, 1999).

For an assessment of the overall potential reactivity of SOM, its bulk composition must be characterized. While several analytical techniques are available (Kögel-Knabner, 2000), common elemental analysis is not sufficiently specific to cover the wide range of organic compounds present. In addition, the abundance of macromolecular compounds in biomass (Kogel-Knabner, 2002) makes SOM unavailable to any direct analytical approach (Saiz-Jimenez, 1994). ¹³C NMR spectroscopy and other spectroscopic techniques are now widely used for the chemical characterization of SOM (Kögel-Knabner, 2000). These techniques provide information about the nature of carbon environments such as functional groups or aromaticity, and the non-destructiveness and the lack of major pretreatment

requirements are big advantages for samples. However, the low organic matter contents and the presence of Fe-bearing paramagnetic compounds limit their applicability of SOM in aquifer sediments. Furthermore, these techniques do not provide information on the molecular associations of SOM. Pyrolysis is a powerfull thermal degradation technique that allows the characterization of the building blocks of complex macromolecular organic matter when coupled to gas chromatograph and mass spectrometer (Py-GC/MS). It is frequently used to characterize the bulk composition of organic matter in both soils and sediments (Chiavari *et al.*, 1994; Kögel-Knabner, 2000; Levy, 1966; Saiz-Jimenez, 1994; Saiz-Jimenez and De Leeuw, 1986). Although several pitfalls exist, it is currently the main technique available for the molecular bulk characterization of complex SOM (Chiavari *et al.*, 1994).

1.3 REACTIVITY OF SOM IN GROUNDWATER SYSTEMS

Rates of SOM oxidation in aquifer sediments are several orders of magnitude lower than observed in environments that recurrently receive fresh organic matter, such as marine surface sediments (Chapelle and Lovley, 1990; Jakobsen and Postma, 1994). In groundwater systems with an ample, continuous supply of fresh labile organic matter (*e.g.* land-fill leachate), the availability of oxidants commonly limits organic matter degradation rates (Chapelle, 2000). In addition, environmental conditions, such as nutrient level, temperature or acidity potentially control microbial activity (Atlas and Bartha, 1998).

A number of studies have shown that not the addition of nitrate but the addition of a labile carbon source, such as glucose, significantly increased denitrification rates in groundwater systems (Bengtsson and Bergwall, 1995; Bradley *et al.*, 1992; Hill *et al.*, 2000; Obenhuber and Lowrance, 1991; Smith and Duff, 1988; Starr and Gillham, 1993). This indicates that neither microbial activity nor the amount of oxidants is rate limiting and supports the general idea that the availability of SOM controls the rate of its degradation in aquifer sediments.

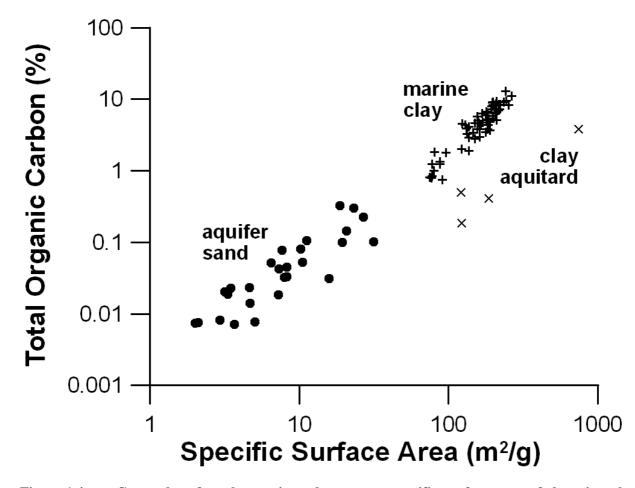


Figure 1.4 Cross plot of total organic carbon versus specific surface area of the mineral phase. A preliminary study (unpublished results) at the 't Klooster site (Fig. 1.5) provided the data for the aquifer sands. Data for marine clay is taken from a study on black shale (Kennedy *et al.*, 2002). Clay aquitard data are taken from a study on four different aquitards (Allen-King *et al.*, 1995). All specific surface areas (SSA) were determined by sorption of ethyl-glycol monoethyl (Churchman *et al.*, 1991).

Both its accessibility (physical) and degradability (chemical) potentially control the availability of SOM in aquifer sediments. Physical limitations on its reactivity occur at a grain scale when particle–organic compound interactions protects a part of the organic matter against microbial degradation. Studies have indicated a relationship between SOM availability and sorption to mineral surfaces in both marine clay sediments (Keil *et al.*, 1994; Mayer, 1994a; Mayer, 1994b; Mayer, 1999) and soils (Chorover and Amistadi, 2001; Salmon *et al.*, 2000; Sollins *et al.*, 1996). In groundwater systems, it has been shown that microbes in clay aquitards are unable to mineralize the SOM present due to pore size restrictions (Chapelle and Bradley, 1996; Chapelle and Lovley, 1990; McMahon and Chapelle, 1991). In a preliminary study, a positive relationship was found between the specific surface area and total organic

carbon contents of aquifer sands (Fig. 1.4, unpublished results). While considerable scatter in the data exists, the general trend compares favorably with data for clayey sediments (Allen-King *et al.*, 1995; Kennedy *et al.*, 2002). Therefore, the interaction of SOM with mineral surfaces may decrease its availability in aquifer sediments.

Alternatively, SOM may be chemically refractory towards oxidation. From studies on organic matter in soils and marine sediments, it is generally recognized that its reactivity decreases with continuing degradation. More precisely, the most labile compounds are consumed at a higher rate, resulting in an overall decrease of SOM reactivity with time. Built on this notion, several descriptive models have incorporated SOM fractions with different reactivities to account for the decreasing reactivity of SOM with time (Berner, 1980; Middelburg, 1989). However, these fractions are arbitrary and no tools exist to assess the size and reactivity of these different kinetic pools (Almendros and Dorado, 1999; Gleixner *et al.*, 2002).

1.4 SCOPE OF THIS STUDY

This thesis focuses on the role of SOM as a reductant in aquifer sediments. Using pyrolysis-GC/MS, the molecular composition of SOM is characterized and the controls on its reactivity are assessed.

As stated earlier, SOM generally co-occurs and is frequently even closely associated with other sedimentary reductants in aquifer sediments. Therefore, the relative contribution of SOM to oxidant consumption during sediment oxidation depends on the reactivity of other reductants present. The amounts of these reductants present depend on the diagenetic history and provenance of the sediment. For example, pyrite and Fe(II)-bearing glauconite are commonly formed in marine depositional environments, while siderite is predominantly formed in terrestrial settings (Berner, 1971; Postma, 1982). While the reactivity of SOM in aquifers is either chemically or physically controlled, the oxidation of these reductants under pH-neutral conditions is mainly determined by surface oxidation kinetics. Therefore, the precipitation of metal hydroxide on mineral surfaces is an impediment that controls their reactivity (Nicholson *et al.*, 1990; Postma, 1983; Postma, 1990). The co-

occurrence of several potentially reactive sedimentary reductants in aquifer sediments complicates the isolated study of SOM reactivity upon exposure to oxidants.

Therefore, the separation of and the controls on the contributions of various reductants to the reduction capacity of aquifer sediments is another aim of this study.

Aquifer sediments from two drinking water production sites were studied (Fig. 1.5). The Langerak site is located in the central part of the Netherlands. Here, a confined sedimentary aquifer is recharged with water from the River Lek. Proposed future induced riverbank infiltration will increase the oxidant loadings of NO₃ and O₂. The site 't Klooster is located in the eastern part of the Netherlands. Here, knowledge on the reactivity of aquifer sediments is particularly important as the excessive use of agricultural fertilizers on sandy soils cause elevated nitrate concentrations in shallow groundwater (Fraters *et al.*, 1998; Hefting and de Klein, 1998; Pomper, 1989; Reijnders *et al.*, 1998; van Beek *et al.*, 1994; van Beek and Vogelaar, 1998).

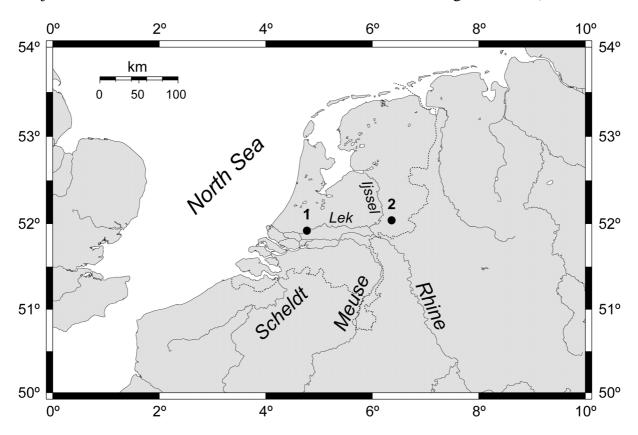


Figure 1.5 Location of the Langerak (1) and 't Klooster (2) aquifers in the Rhine-Meuse delta. The Langerak site is located along the River Lek. The 't Klooster site is located in between the River Rhine and River Ijssel. Dotted line represents the Dutch national boundary.

1.5 OUTLINE OF THIS THESIS

This chapter serves as an introduction for the following research chapters. Chapter 2 describes the design and development of a fluidized-bed reactor for anaerobic biogeochemical sediment incubations; the developed fluidized-bed reactor was tested during denitrification experiments described in Chapter 4. In Chapter 3, sediments from the Langerak aquifer were characterized for the presence and reactivity of potential reductants. The reactivity towards oxygen was determined during sediment incubations. A method is developed to discriminate between contributions from SOM, pyrite and siderite oxidation based on CO₂/O₂ ratios and sulfate production. This method is also applied for the sediment incubations describe in Chapters 5 and 6. In Chapter 4, the nitrate reduction potential of anaerobic sediments from the Langerak aquifer is assessed using fluidized-bed (Chapter 2) and batch reactor experiments. The geochemical and microbial controls on denitrification are discussed.

Chapter 5 describes the molecular composition of SOM in aquifer sediments selected from a marine and fluvio-glacial formation at the Klooster site. Molecular indications on the degradation status of SOM are linked with the reactivity of SOM as observed during aerobic incubation experiments. Chapter 6 discusses the molecular composition of SOM in different geological formations at the Klooster site. The controls on SOM preservation as well as the presence of pyrite and ferroan carbonates in aquifer sediments at this site are assessed. The controls on the reduction capacity and on the contributions of various reductants are discussed using aerobic sediment oxidation experiments. Lastly, Chapter 7 provides a synthesis of the thesis, in which the main findings are summarized and discussed, and where implications and future research directions are considered.

References

Aiken G. (1985) Humic Substances in Soil, Sediment, and Water; Geochemistry, Isolation, and Characterization, pp. 692 pp.

Allen-King R. M., Groenevelt H., Waren C. J., and Mackay D. M. (1995) Non-linear chlorinated-solvent sorption in four aquitards. *Journal of Contaminant Hydrology* **22**, 203-221.

Almendros G. and Dorado J. (1999) Molecular characteristics related to the biodegradability of humic acid preparations. *European Journal of Soil Science* **50**, 227-236.

Appelo C. A. J. and Postma D. (1993) Geochemistry, Groundwater and Pollution. Balkema.

Atlas R. M. and Bartha R. (1998) *Microbial Ecology: Fundamentals and Applications*. Benjamin/Cummings Science Publishing.

Baker R. J., Baehr A. L., and Lahvis M. A. (2000) Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates. *Journal of Contaminant Hydrology* **41**, 175-192.

Barcelona M. J. and Holm R. T. (1991) Oxidation-reduction capacities of aquifer solids. *Environmental Science and Technology* **25**, 1565-1572.

Bengtsson G. and Bergwall C. (1995) Heterotrophic denitrification potential as an adaptive response in groundwater bacteria. *FEMS Microbiology Ecology* **16**, 307-318.

Berner R. A. (1971) Principles of Chemical Sedimentology. McGraw-Hill.

Berner R. A. (1980) A rate model for organic matter decomposition during bacterial sulfate reduction in marine sediments. In *Biogéochimie de la matière organique à l'interface eau-sédiment marin*, Vol. 293 (ed. C. I. d. C.N.R.S.), pp. 35-44.

Blowes D. (2002) Environmental chemistry - Tracking hexavalent Cr in groundwater. *Science* **295**(5562), 2024-2025.

Böhlke J. K. and Denver J. M. (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. *Water Resources Research* **31**(9), 2319-2339.

Bradley P. M., Chapelle F. H., and Wilson J. T. (1998) Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer. *Journal of Contaminant Hydrology* **31**, 111-127.

Bradley P. M., Fernandez Jr M., and Chapelle F. H. (1992) Carbon limitation of denitrification rates in an anaerobic groundwater system. *Environmental Science and Technology* **28**(12), 2377-2381.

Broholm M. M., Crouzet C., Arvin E., and Mouvet C. (2000) Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer. *Journal of Contaminant Hydrology* **44**, 275-300.

Camacho-Ibar V. F., Aveytua-Alcazar L., and Carriquiry J. D. (2003) Fatty acid reactivities in sediment cores from the northern Gulf of California. *Organic Geochemistry* **34**(3), 425-439.

Canfield D. E. (1994) Factors influencing organic carbon preservation in marine sediments. *Chemical Geology* **114**, 315-329.

Chapelle F. H. (2000) The significance of microbial processes in hydrogeology and geochemistry. *Hydrogeology Journal* **8**(1), 41-46.

- Chapelle F. H. and Bradley P. M. (1996) Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments. *Geology* **24**(10), 925-928.
- Chapelle F. H. and Lovley D. R. (1990) Rates of microbial metabolism in deep coastal plain aquifers. *Applied and Environmental Microbiology* **56**(6), 1865-74.
- Chiavari G., Torsi G., Fabbri D., and Galletti G. C. (1994) Comparative study of humic substances in soil using pyrolitic techniques and other conventional chromatographic methods. *Analyst* **119**, 1141-1150.
- Chorover J. and Amistadi M. K. (2001) Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. *Geochimica et Cosmochimica Acta* **65**(1), 95-109.
- Churchman G. J., Burke C. M., and Parfitt R. L. (1991) Comparison of various methods for the determination of specific surfaces of subsoils. *Journal of Soil Science* **42**, 449-461.
- Cowie G. L. and Hedges J. I. (1992) Sources and reactivities of amino-acids in a coastal marine environment. *Limnology and Oceanography* **37**(4), 703-724.
- Cowie G. L., Hedges J. I., and Calvert S. E. (1992) Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment. *Geochimica et Cosmochimica Acta* **56**, 1963-1978.
- Fraters D., Boumans L. J. M., van Drecht G., de Haan T., and de Hoop W. D. (1998) Nitrogen monitoring in groundwater in the sandy regions of the Netherlands. *Environmental Pollution* **102**, 479-485.
- Freeze R. A. and Cherry J. A. (1979) Groundwater. Prentice-Hall, Inc.
- Frimmel F. H. (1998) Characterization of natural organic matter as major constituents in aquatic systems. *Journal of Contaminant Hydrology* **35**(1-3), 201-216.
- Gleixner G., Poirier N., Bol R., and Balesdent J. (2002) Molecular dynamics of organic matter in a cultivated soil. *Organic Geochemistry* **33**(3), 357-366.
- Grossi V., Blokker P., and Damste J. S. S. (2001) Anaerobic biodegradation of lipids of the marine microalga Nannochloropsis salina. *Organic Geochemistry* **32**(6), 795-808.
- Harwood C. S., Bruchhardt G., Herrmann H., and Fuchs G. (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. *FEMS Microbiology Reviews* **22**, 439-458.
- Hedges J. I. and Oades J. M. (1997) Comparative organic geochemistries for soils and marine sediments. *Organic Geochemistry* **27**(7/8), 319-363.
- Hefting M. M. and de Klein J. J. M. (1998) Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. *Environmental Pollution* **102**(1), 521-526.
- Henrichs S. M. (1993) Early diagenesis of organic matter: the dynamics (rates) of cycling of organic compounds. In *Organic Geochemistry* (ed. M. H. Engel and S. A. Macko), pp. 101-117. Plenum Press.
- Henrichs S. M. and Reeburgh W. S. (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. *Geomicrobiology Journal* **5**(3-4), 191-237.

Heron G. and Christensen T. H. (1995) Impact of Sediment-Bound Iron on Redox Buffering in a Landfill Leachate Polluted Aquifer (Vejen, Denmark). *Environmental Science & Technology* **29**(1), 187-192.

Hill A. R., Devito K. J., Campagnolo S., and Sanmugadas K. (2000) Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. *Biogeochemistry* **51**, 193-223.

Hiscock K. M., Lloyd J. W., and Lerner D. N. (1991) Review of natural and artificial denitrification of groundwater. *Water Research* **25**(8), 1099-1111.

Hulthe G., Hulth S., and Hall P. O. J. (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. *Geochimica et Cosmochimica Acta* **62**(8), 1319-1328.

Jakobsen R. and Postma D. (1994) In situ rates of sulfate reduction in an aquifer (Rømø, Denmark) and implications for the reactivity of organic matter. *Geology* **22**, 1103-1106.

Johns M. W. (1968) Geochemistry of groundwater from Upper Cretaceous-Lower Tertiary sand aquifers in South-Western Victoria, Australia. *Journal of Hydrology* **6**(4), 337-357.

Keil R. G., Tsamakis E., Fuh C. B., Giddings J. C., and Hedges J. I. (1994) Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. *Geochimica et Cosmochimica Acta* **58**(2), 879-893.

Kelly W. R. (1997) Heterogeneties in ground-water geochemistry in a sand aquifer beneath an irrigated field. *Journal of Hydrology* **198**, 154-176.

Kennedy M. J., Pevear D. R., and Hill R. J. (2002) Mineral surface control of organic carbon in black shale. *Science* **295**, 657-660.

Kogel-Knabner I. (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. *Soil Biology and Biochemistry* **34**(2), 139-162.

Kögel-Knabner I. (2000) Analytical approaches for characterizing soil organic matter. *Organic Geochemistry* **31**, 609-625.

Korom S. F. (1992) Natural denitrification in the saturated zone: A review. *Water Resources Research* **28**(6), 1657-1668.

Kristensen E. and Holmer M. (2001) Decomposition of plant materials in marine sediment exposed to different electron acceptors (O₂, NO3- and SO42-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. *Geochimica et Cosmochimica Acta* **65**(3), 419-433.

Lee C. (1992) Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decompostion in oxic and anoxic systems. *Geochimica et Cosmochimica Acta* **56**, 3323-3335.

Levy R. L. (1966) Pyrolysis gas chromatography: A review of the technique. *Chromatographic Reviews* **8**, 48-89.

Mayer L. M. (1994a) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. *Chemical Geology* **114**, 347-363.

Mayer L. M. (1994b) Surface area control of organic carbon accumulation in continental shelf sediments. *Geochimica et Cosmochimica Acta* **58**(4), 1271-1284.

Mayer L. M. (1999) Extent of coverages of mineral surfaces by organic matter in marine sediments. *Geochimica et Cosmochimica Acta* **63**(2), 207-215.

McMahon P. B. and Chapelle F. H. (1991) Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. *Nature* **349**, 233-235.

Middelburg J. J. (1989) A simple rate model for organic matter decomposition in marine sediments. *Geochimica et Cosmochimica Acta* **53**, 1577-1581.

Nelson M. D., Parker B. L., Al T. A., Cherry J. A., and Loomer D. (2001) Geochemical reactions resulting from in situ oxidation of PCE- DNAPL by KMnO4 in a sandy aquifer. *Environmental Science & Technology* **35**(6), 1266-1275.

Nicholson R. V., Gillham R. W., and Reardon E. J. (1990) Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. *Geochimica et Cosmochimica Acta* **54**, 395-402.

Nielsen P. H., Bjarnadóttir H., Winter P. L., and Christensen T. H. (1995) In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 2. Fate of aromatic and chlorinated aliphatic compounds. *Journal of Contaminant Hydrology* **20**, 51-66.

Obenhuber D. C. and Lowrance R. (1991) Reduction of nitrate in aquifer microcosms by carbon additions. *Journal of Environmental Quality* **20**(1), 255-8.

Pettersson C., Ephraim J., and Allard B. (1994) On the composition and properties of humic substances isolated from deep groundwater and surface waters. *Organic Geochemistry* **21**(5), 443-451.

Plummer L. N. (1977) Defining reactions and mass transfer in part of the Floridan Aquifer. *Water Resources Research* **15**(5), 801-812.

Pomper A. B. (1989) Human influences on groundwater quality in a sandy region with multiple land use. *Chemical Geology* **76**(3-4), 371-383.

Postma D. (1982) Pyrite and siderite formation in brackish and freshwater swamp sediments. *American Journal of Science* **282**, 1151-1183.

Postma D. (1983) Pyrite and siderite oxidation in swamp sediments. *Journal of Soil Science* **34**, 163-182.

Postma D. (1990) Kinetics of nitrate reduction by detrital Fe(II)-silicates. *Geochimica et Cosmochimica Acta* **54**(3), 903-908.

Postma D., Boesen C., Kristiansen H., and Larsen F. (1991) Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. *Water Resources Research* **27**(8), 2027-2045.

Reijnders H. F. R., van Drecht G., Prins H. F., and Boumans L. J. M. (1998) The quality of the groundwater in the Netherlands. *Journal of Hydrology* **207**, 179188.

- Sagemann J., Bale S. J., Briggs D. E. G., and Parkes R. J. (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. *Geochimica et Cosmochimica Acta* **63**(7/8), 1083-1095.
- Saiz-Jimenez C. (1994) Analytical pyrolyisis of humic substances: pitfalls, limitations and possible solutions. *Environmental Science and Technology* **28**(11), 1773-1780.
- Saiz-Jimenez C. and De Leeuw J. W. (1986) Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry. *Journal of Analytical and Applied Pyrolysis* **9**(2), 99-119.
- Salmon V., Derenne S., Lallier-Vergès, Largeau C., and Beaudoin B. (2000) Protection of organic matter by mineral matrix in a Cenomanian black shale. *Organic Geochemistry* **31**, 463-474.
- Schäfer W. and Kinzelbach W. (1996) Numerical modelling of in situ aquifer remediation with a biological component three case studies. *European Water Pollution Control* **6**(5), 19-35.
- Schreiber M. E. and Bahr J. M. (1999) Spatial Electron Acceptor Variability: Implications for Assessing Bioremediation Potential. *Bioremediation Journal* **3**(4), 363-378.
- Senko J. M., Istok J. D., Suflita J. M., and Krumholz L. R. (2002) *In-situ* evidence for uranium immobilization and remobilization. *Environmental Science & Technology* **36**(7), 1491-1496.
- Skubal K. L., Barcelona M. J., and Adriaens P. (2001) An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect. *Journal of Contaminant Hydrology* **49**, 151-169.
- Smith R. L. and Duff J. H. (1988) Denitrification in a sand and gravel aquifer. *Applied and Environmental Microbiology* **54**(5), 1071-1078.
- Smith R. L., Howes B. L., and Duff J. H. (1991) Denitrification in nitrate-contaminated groundwater: occurrence in steep vertical geochemical gradients. *Geochimica et Cosmochimica Acta* **55**(1815-1825).
- Sollins P., Homann P., and Caldwell B. A. (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. *Geoderma* **74**(1-2), 65-105.
- Starr R. C. and Gillham R. W. (1993) Denitrification and organic carbon availability in two aquifers. *Ground Water* **31**(6), 935-947.
- Stevenson F. J. (1994) Humus Chemistry. Genesis, Compositions, Reactions. Wiley.
- Sun M. Y., Cai W. J., Joye S. B., Ding H. B., Dai J. H., and Hollibaugh J. T. (2002) Degradation of algal lipids in microcosm sediments with different mixing regimes. *Organic Geochemistry* **33**(4), 445-459.
- Tegelaar E. W., Hollman G., van der Vegt P., de Leeuw J. W., and Holloway P. J. (1995) Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (Suberan). *Organic Geochemistry* **23**(3), 239-251.

Thornstenson D. C. and Fisher D. W. (1979) The geochemistry of the Fox Hills-Basal Hell Creek aquifer in Southwestern North Dakota and Northwestern South Dakota. *Water Resources Research* **15**(6), 1479-1498.

Thurman E. M. (1985) Organic Geochemistry of Natural Waters, pp. 512 pp.

Tiedje J. M. (1988) Ecology of denrification and dissimilatory nitrate reduction to ammonium. In *Biology of anaerobic microorganisms* (ed. A. J. B. Zehnder), pp. 179-244. John Wiley and Sons.

Tissot B. P. and Welte D. H. (1984) Petroleum Formation and Occurrence. Springer-Verlag.

Trudell M. R., Gillham R. W., and Cherry J. A. (1986) An *in-situ* study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer. *Journal of Hydrology* (Amsterdam, Netherlands) **83**(3-4), 251-268.

Tyson R. V. (1995) Sedimentary Organic Matter. Chapman & Hall.

van Beek C. G. E. M., Laeven M. P., and Vogelaar A. J. (1994) Modellering denitrificatie in grondwater onder invloed van organisch materiaal. *H*₂*O* **27**(7), 180-184.

van Beek C. G. E. M. and Vogelaar A. J. (1998) Pompstation Hengelo 't Klooster— Geohydrologische, geochemische en hydrochemische beschrijving, pp. 84. KIWA N.V.